Scrambling Time from Local Perturbations of the Eternal BTZ Black Hole

Andrius Štikonas

University of Edinburgh

2015-05-06

In collaboration with Paweł Caputa, Joan Simón, Tadashi Takayanagi and Kento Watanabe

Density matrices

Pure state: vector in a Hilbert space

 $|\psi\rangle\in\mathcal{H}$

Often quantum mechanics

$$|\psi\rangle \in \mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Can we find $|\psi_A\rangle$ corresponding to $|\psi\rangle$?

Density matrices

Pure state: vector in a Hilbert space

 $|\psi\rangle\in\mathcal{H}$

Often quantum mechanics

$$|\psi\rangle \in \mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Can we find $|\psi_A angle$ corresponding to $|\psi angle$? **No**

Density matrices

Pure state: vector in a Hilbert space

 $|\psi\rangle\in\mathcal{H}$

Often quantum mechanics

$$|\psi\rangle \in \mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Can we find $|\psi_A\rangle$ corresponding to $|\psi\rangle$? No Mixed state is probabilistic mixture of pure states: state $|\Psi_i\rangle$ with probability p_i

Density matrix

$$\rho = \sum_{n} p_n \left| \Psi_n \right\rangle \left\langle \Psi_n \right|$$

$$\langle \psi | \mathcal{O}_A \otimes \mathbb{I} | \psi \rangle = \operatorname{Tr}(\mathcal{O}_A \rho_A)$$

Thermal states obey Boltzmann distribution

$$p_n = \frac{1}{Z(\beta)} e^{-\beta E_n}$$

Thermal density matrix

$$\rho = \frac{1}{Z(\beta)} \sum_{n} e^{-\beta E_n} |\Psi_n\rangle \langle \Psi_n| = \frac{1}{Z(\beta)} e^{-\beta H}$$

Entanglement entropy

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Trace over one Hilbert space

Reduced density matrix

 $\rho_A = \operatorname{Tr}_B \rho$

Entanglement entropy is von Neumann entropy of reduced density matrix

Entanglement entropy

$$S_A = -\operatorname{Tr}_A\left(\rho_A \log \rho_A\right)$$

Replica trick

• Calculate $S_n(A) = \frac{1}{1-n} \log \operatorname{Tr}_A(\rho_A^n)$ on n-sheeted Riemann surface

- Continue analytically
- $S_A = \lim_{n \to 1} S_n(A)$

Holographic entanglement entropy

Ryu-Takayanagi formula

$$S_A = \min_{\partial \gamma = \partial A} \frac{\operatorname{Area}(\gamma)}{4G_N}$$

Mutual information

Entanglement between two systems *A* and *B*

Mutual information

$$I_{A:B} = S_A + S_B - S_{A\cup B} \ge \frac{(\langle \mathcal{O}_A \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle)^2}{2 \|\mathcal{O}_A\|^2 \|\mathcal{O}_B\|^2}$$

Provides an upper bound on correlators between A and B

A natural question to ask is when correlators and entanglement get destroyed by the perturbation?

Scrambling time is defined by

 $I_{A:B}(t^{\star}) = 0$

Our goal is to compute the **scrambling time** for thermofield double state

Two non-interacting 2d CFTs with Hilbert spaces $\mathcal{H}_L \cong \mathcal{H}_R$ Choose a particular **entangled** state

Thermofield double state in $\mathcal{H}_L \otimes \mathcal{H}_R$

$$|\Psi_{\beta}\rangle = \frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2}E_{n}} |n\rangle_{L} |n\rangle_{R}$$

Tracing over \mathcal{H}_L or \mathcal{H}_R yields *thermal* reduced density matrix

Gravity dual description

Eternal BTZ BH is holographic dual of TFD

Two natural choices for Hamiltonian:

- $H = H_L \otimes \mathbb{I}_L \mathbb{I}_R \otimes H_R$. $t_- = t_+ = t$
- *H* = *H*_L ⊗ I_L + I_R ⊗ *H*_R. *t*_− = −*t*₊ = *t*. Approximate description of two AdS BH

Adding a local perturbation

Perturb TFD by a primary operator ψ in the CFT_L at time $-t_{\omega}$ in the past

$$\rho_L(t) = \mathcal{N} e^{-iH_L t} e^{-\epsilon H_L} \psi(0, -t_\omega) e^{2\epsilon H_L + \beta H_L} \psi^{\dagger}(0, -t_\omega) e^{-\epsilon H_L} e^{iH_L t}$$

Simpler in Euclidean time $(x + i\tau, x - i\tau)$

$$\mathcal{N}\psi(x_2,\bar{x}_2)e^{\beta H}\psi^{\dagger}(x_1,\bar{x}_1)$$

where

$$\begin{aligned} x_1 &= t_- + t_\omega + i\epsilon, \qquad x_2 &= t_- + t_\omega - i\epsilon \\ \bar{x}_1 &= -t_- - t_\omega - i\epsilon, \qquad \bar{x}_2 &= -t_- - t_\omega + i\epsilon \end{aligned}$$

Thermal state $\Rightarrow \tau \sim \tau + \beta$

Analytic continuation in TFD

One-sided correlator

$$\langle \Psi_{\beta} | \mathcal{O}_{L}(x_{1}, 0) \mathcal{O}_{L}^{\dagger}(x_{2}, t) | \Psi_{\beta} \rangle$$

$$= \sum_{n,m} e^{-\beta E_{n} + it(E_{n} - E_{m})} \langle n |_{L} \mathcal{O}_{L}(x_{1}, 0) | m \rangle_{L} \langle m |_{L} \mathcal{O}_{L}^{\dagger}(x_{2}, 0) | n \rangle_{L}$$

Two-sided correlator

$$\langle \Psi_{\beta} | \mathcal{O}_{L}(x_{1}, 0) \mathcal{O}_{R}(x_{2}, t) | \Psi_{\beta} \rangle$$

$$= \sum_{n,m} e^{-\beta E_{n} + i(t - i\frac{\beta}{2})(E_{n} - E_{m})} \langle n |_{L} \mathcal{O}_{L}(x_{1}, 0) | m \rangle_{L} \langle m |_{R} \mathcal{O}_{R}^{\dagger}(x_{2}, 0) | n \rangle_{R}$$

Analytic continuation in TFD

$$\langle \Psi_{\beta} | \mathcal{O}_L(x_1, 0) \mathcal{O}_L(x_2, t) | \Psi_{\beta}
angle = \langle \Psi_{\beta} | \mathcal{O}_L(x_1, 0) \mathcal{O}_R^{\dagger} \left(x_2, t - i \frac{\beta}{2} \right) | \Psi_{\beta}
angle$$

One-sided and two-sided correlators in TFD are related $t\mapsto t+i\frac{\beta}{2}$

Setup for mutual information

Replica trick for S_A

Replica trick \rightarrow replicate cylinder n times, glue along the cuts Instead, twist operators can be used

$$\operatorname{Tr} \rho_{A}^{n}(t) = \frac{\langle \Psi(x_{1}, \bar{x}_{1})\sigma_{n}(x_{2}, \bar{x}_{2})\tilde{\sigma}_{n}(x_{3}, \bar{x}_{3})\Psi^{\dagger}(x_{4}, \bar{x}_{4})\rangle_{C_{n}}}{\left(\langle \psi(x_{1}, \bar{x}_{1})\psi^{\dagger}(x_{4}, \bar{x}_{4})\rangle_{C_{1}}\right)^{n}}$$

$$\begin{aligned} x_1 &= -i\epsilon, \quad x_2 = y - t_\omega - t_-, \quad x_3 = y + L - t_\omega - t_-, \quad x_4 = +i\epsilon \\ \bar{x}_1 &= +i\epsilon, \quad \bar{x}_2 = y + t_\omega + t_-, \quad \bar{x}_3 = y + L + t_\omega + t_-, \quad \bar{x}_4 = -i\epsilon \end{aligned}$$

$$\Psi = \psi_1 \cdot \psi_2 \cdot \ldots \cdot \psi_n$$

 Ψ has a ψ_i for each copy of the theory Conformal dimension nh_ψ Conformal dimension of twist operators is $2H_\sigma$

$$H_{\sigma} = \frac{c}{24} \left(n - \frac{1}{n} \right)$$

Correlators on the plane

We are in a thermal state on the cylinder

Map to the plane

$$w(x) = e^{\frac{2\pi}{\beta}x}$$

- 2-pt correlators are fixed by conformal symmetry
- 4-pt correlators are expressed via conformal blocks $G(z, \overline{z})$

$$\operatorname{Tr} \rho_A^n(t) = \left| \frac{\beta}{\pi \varepsilon_{UV}} \sinh\left(\frac{\pi (x_2 - x_3)}{\beta}\right) \right|^{-4H_\sigma} |1 - z|^{4H_\sigma} G(z, \bar{z})$$

where

$$z = \frac{(w_1 - w_2)(w_3 - w_4)}{(w_1 - w_3)(w_2 - w_4)}$$

Approximation: $z = 1 + f(y, L, \beta, t)\epsilon + O(\epsilon^2)$

4-pt function $\langle \Psi(x_1, \bar{x}_1) \sigma_n(x_2, \bar{x}_2) \tilde{\sigma}_n(x_3, \bar{x}_3) \Psi^{\dagger}(x_4, \bar{x}_4) \rangle_{C_n}$ contains two light and two heavy operators Fitzpatrick, Kaplan and Walters considered such setup in arXiv:1403.6829

$$\log G(z, \bar{z}) \simeq -\frac{c(n-1)}{6} \log \frac{z^{\frac{1}{2}(1-\alpha_{\psi})} \bar{z}^{\frac{1}{2}(1-\bar{\alpha}_{\psi})} (1-z^{\alpha_{\psi}}) (1-\bar{z}^{\bar{\alpha}_{\psi}})}{\alpha_{\psi} \bar{\alpha}_{\psi}}$$

where

$$\alpha_{\psi} = \sqrt{1 - \frac{24h_{\psi}}{c}} \,,$$

Entanglement entropy S_A

 $S_A = S_{\text{thermal}} + \Delta S_A$

Thermal part of entanglement entropy is

$$S_{\text{thermal}} = rac{c}{3} \log \left(rac{eta}{\pi arepsilon_{UV}} \sinh rac{\pi L}{eta}
ight)$$

ΔS_A , entanglement entropy due to perturbation

$$0, t_{-} + t_{\omega} < y$$

$$\frac{c}{6} \log \left[\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}} \frac{\sinh \left(\frac{\pi (y + L - t_{-} - t_{\omega})}{\beta} \right) \sinh \left(\frac{\pi (t_{-} + t_{\omega} - y)}{\beta} \right)}{\sinh \left(\frac{\pi L}{\beta} \right)} \right]$$

$$0, t_{-} + t_{\omega} > y + L$$

No change before perturbations arrives or after it leaves ${\cal A}$

Setup for mutual information

Entanglement entropy S_B

$$\operatorname{Tr} \rho_B^n(t) = \frac{\langle \Psi(x_1, \bar{x}_1) \sigma_n(x_5, \bar{x}_5) \tilde{\sigma}_n(x_6, \bar{x}_6) \Psi^{\dagger}(x_4, \bar{x}_4) \rangle_{C_n}}{\left(\langle \psi(x_1, \bar{x}_1) \psi^{\dagger}(x_4, \bar{x}_4) \rangle_{C_1} \right)^n}$$

$$x_{5} = y + L + i\frac{\beta}{2} - t_{\omega} - t_{+}, \quad x_{6} = y + i\frac{\beta}{2} - t_{\omega} - t_{+}$$

$$\bar{x}_{5} = y + L - i\frac{\beta}{2} + t_{\omega} + t_{+}, \quad \bar{x}_{6} = y - i\frac{\beta}{2} + t_{\omega} + t_{+}$$

Entanglement entropy remains thermal

$$S_B = rac{c}{3} \log \left(rac{eta}{\pi arepsilon_{UV}} \sinh rac{\pi L}{eta}
ight)$$

$$\operatorname{Tr} \rho_{A\cup B}^{n} = \frac{\langle \psi(x_{1}, \bar{x}_{1})\sigma_{n}(x_{2}, \bar{x}_{2})\tilde{\sigma}_{n}(x_{3}, \bar{x}_{3})\sigma_{n}(x_{5}, \bar{x}_{5})\tilde{\sigma}_{n}(x_{6}, \bar{x}_{6})\psi^{\dagger}(x_{4}, \bar{x}_{4})\rangle}{\left(\langle \psi(x_{1}, \bar{x}_{1})\psi^{\dagger}(x_{4}, \bar{x}_{4})\rangle_{C_{1}}\right)^{n}}$$

Map to the plane $w(x) = \exp\left(\frac{2\pi}{\beta}x\right)$ and

$$z(w) = \frac{(w_1 - w)(w_3 - w_4)}{(w_1 - w_3)(w - w_4)}$$

We obtain the following 6-pt function

$$\langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(z_6, \bar{z}_6) | \psi \rangle$$

S and T-channels: Resolution of Identity

S-channel

$$\begin{aligned} \langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(z_6, \bar{z}_6) | \psi \rangle \\ = \sum_{\alpha} \langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) | \alpha \rangle \langle \alpha | \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(z_6, \bar{z}_6) | \psi \rangle \end{aligned}$$

T-channel

$$\begin{aligned} \langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(z_6, \bar{z}_6) | \psi \rangle \\ &= \sum_{\alpha} \langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(z_6, \bar{z}_6) | \alpha \rangle \, \langle \alpha | \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(1, 1) | \psi \rangle \end{aligned}$$

OPE of twist operators

$$\sigma_n(z,\bar{z})\tilde{\sigma}_n(1,1) \sim \mathbb{I} + \mathcal{O}\left((z-1)^r\right) \qquad r \in \mathbb{N}$$

Orthogonality of 2-pt functions

$$\sum_{\alpha} \left\langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) | \alpha \right\rangle \left\langle \alpha \right| \simeq \left\langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(1, 1) | \psi \right\rangle \left\langle \psi |$$

So the first 4-pt function is the same as in ${\cal S}_A$ while the second the same as in ${\cal S}_B$

$$S_{A\cup B} = S_A + S_B$$
 and $I_{A:B} = 0$

Again, dominant contribution comes from $|\alpha\rangle = |\psi\rangle$.

$$\begin{aligned} \langle \psi | \sigma_n(z_5, \bar{z}_5) \tilde{\sigma}_n(1, 1) | \psi \rangle &= G(z_5, \bar{z}_5) \\ \langle \psi | \sigma_n(z, \bar{z}) \tilde{\sigma}_n(z_6, \bar{z}_6) | \psi \rangle &= |1 - \tilde{z}_2|^{4H_{\sigma}} | z_2 - z_6 |^{-4H_{\sigma}} G(\tilde{z}_2, \bar{\tilde{z}}_2) \end{aligned}$$

Cross-ratios are not the same as in S-channel

Cross-ratios

$$z_{5} = 1 - \frac{2\pi i\epsilon}{\beta} \frac{\cosh \frac{\pi(t--t_{+})}{\beta}}{\sinh \frac{\pi(y+L-t_{-}-t_{\omega})}{\beta} \cosh \frac{\pi(y+L-t_{+}-t_{\omega})}{\beta}} + \mathcal{O}(\epsilon^{2})$$

$$\bar{z}_{5} = 1 + \frac{2\pi i\epsilon}{\beta} \frac{\cosh \frac{\pi(t_{-}-t_{+})}{\beta}}{\sinh \frac{\pi(y+L+t_{-}+t_{\omega})}{\beta} \cosh \frac{\pi(y+L+t_{+}+t_{\omega})}{\beta}} + \mathcal{O}(\epsilon^{2})$$

$$\tilde{z}_{2} = 1 + \frac{2\pi i\epsilon}{\beta} \frac{\cosh \frac{\pi(t_{-}-t_{+})}{\beta}}{\sinh \frac{\pi(y-t_{-}-t_{\omega})}{\beta} \cosh \frac{\pi(y-t_{+}-t_{\omega})}{\beta}} + \mathcal{O}(\epsilon^{2})$$

$$\tilde{z}_{2} = 1 - \frac{2\pi i\epsilon}{\beta} \frac{\cosh \frac{\pi(t_{-}-t_{+})}{\beta}}{\sinh \frac{\pi(y+t_{-}+t_{\omega})}{\beta} \cosh \frac{\pi(y+t_{+}+t_{\omega})}{\beta}} + \mathcal{O}(\epsilon^{2})$$

Entanglement entropy $S_{A\cup B}$

$$S_{A \cup B} \simeq \frac{2c}{3} \log \left| \frac{\beta}{\pi \varepsilon_{UV}} \cosh\left(\frac{\pi \Delta t}{\beta}\right) \right| \quad t_{-} + t_{\omega} < y$$

$$S_{A\cup B} \simeq \frac{2c}{3} \log \left| \frac{\beta}{\pi \varepsilon_{UV}} \cosh\left(\frac{\pi \Delta t}{\beta}\right) \right| + \frac{c}{6} \log\left(\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}} \frac{\sinh \frac{\pi (t_- + t_w - y)}{\beta} \cosh \frac{\pi (t_+ + t_w - y)}{\beta}}{\cosh \frac{\pi \Delta t}{\beta}}\right)$$
$$y < t_- + t_\omega < y + L$$

Entanglement entropy $S_{A\cup B}$

$$S_{A\cup B} \simeq \frac{2c}{3} \log \left| \frac{\beta}{\pi \varepsilon_{UV}} \cosh\left(\frac{\pi \Delta t}{\beta}\right) \right| + \frac{c}{3} \log\left(\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}}\right) \\ + \frac{c}{6} \log\left(\frac{\sinh\frac{\pi (t_- + t_{\omega} - y)}{\beta} \cosh\frac{\pi (t_+ + t_{\omega} - y)}{\beta}}{\cosh\frac{\pi \Delta t}{\beta}}\right) \\ + \frac{c}{6} \log\left(\frac{\sinh\frac{\pi (t_- + t_{\omega} - y - L)}{\beta} \cosh\frac{\pi (t_+ + t_{\omega} - y - L)}{\beta}}{\cosh\frac{\pi \Delta t}{\beta}}\right) \\ t_- + t_{\omega} > y + L$$

Mutual information

Mutual information

Scrambling time

Scrambling time is defined by

$$I_{A:B}(t^{\star}_{\omega}) = 0$$

Suppose
$$t_{\omega} > y + L$$
 and $\frac{t_{\omega}^{\star}}{\beta} \gg 1$

Scrambling time in perturbed TFD

$$t_{\omega}^{\star} = y + \frac{L}{2} - \frac{\beta}{2\pi} \log\left(\frac{\beta}{\pi\epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}}\right) + \frac{\beta}{\pi} \log\left(2\sinh\frac{\pi L}{\beta}\right)$$

- Gravity dual of TFD is eternal BTZ black hole
- Approximate local perturbation of TFD by a **free falling particle** in the BTZ black hole
- Compute back-reaction of particle on metric of BTZ:
 - Map BTZ Kruskal coordinates to AdS₃
 - Back-reaction in AdS₃ is known: conical singularity or BTZ black hole
 - (Map back-reacted metric back to original coordinates)

Free falling particle

AdS-Schwarzschild patch of the BTZ black hole

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-\left(1 - Mz^{2}\right) dt_{-}^{2} + \frac{dz^{2}}{1 - Mz^{2}} + d\theta^{2} \right], \qquad \theta \sim \theta + 2\pi$$

The geodesic of a free falling particle satisfying $z(-t_{\omega}) = \epsilon$

$$t_{-} = \tilde{\tau}, \quad \theta = 0, \quad 1 - Mz^2 = (1 - M\epsilon^2) \cosh^{-2} \left(\sqrt{M} (\tilde{\tau} + t_{\omega}) \right)$$

Energy of the particle

$$E = \frac{m\,R}{\epsilon}\,\sqrt{1 - M\epsilon^2}$$

matches energy of CFT perturbation if

$$m = \frac{2h_{\psi}}{R}$$

Free falling particle in Kruskal coordinates

Metric in Kruskal coordinates

$$ds^{2} = R^{2} \frac{-4 \, du \, dv + (-1 + uv)^{2} \, d\phi^{2}}{(1 + uv)^{2}}$$

Action of the particle

$$S = -2mR \int \frac{\sqrt{v'} \, du}{1+uv}$$

$$v(u) = \frac{C_2 + (C_1 + C_2^2)u}{1 + C_2 u}$$

where

$$C_1 = M\epsilon^2 e^{2\sqrt{M}t_\omega}$$
$$C_2 = -\sqrt{1 - M\epsilon^2} e^{\sqrt{M}t_\omega}$$

Map to AdS₃

 Map to AdS_3 maps dynamic particle to static particle, so we also need to apply boosts

$$r = \frac{R}{\sqrt{M\epsilon}} \left| \frac{1 - uv}{1 + uv} \right|$$
$$\cdot \sqrt{M\epsilon^2 \sinh^2 \phi + \left(\frac{e^{\sqrt{M}t_\omega} u - e^{-\sqrt{M}t_\omega} v}{1 - uv} - \sqrt{1 - M\epsilon^2} \cosh \phi \right)^2}$$

$$\tan \tau = \sqrt{M}\epsilon \frac{\frac{e^{\sqrt{M}t\omega} u + e^{-\sqrt{M}t\omega} v}{1 - uv}}{\cosh \phi - \sqrt{1 - M\epsilon^2} \frac{e^{\sqrt{M}t\omega} u - e^{-\sqrt{M}t\omega} v}{1 - uv}}}{\tan \varphi}$$
$$\tan \varphi = \sqrt{M}\epsilon \frac{\sinh \phi}{\frac{e^{\sqrt{M}t\omega} u - e^{-\sqrt{M}t\omega} v}{1 - uv} - \sqrt{1 - M\epsilon^2} \cosh \phi}}$$

We mapped point particle to r = 0, $\varphi = 0$ in AdS₃ coordinates

$$ds^{2} = -\left(r^{2} + R^{2}\right)d\tau^{2} + \frac{R^{2}dr^{2}}{r^{2} + R^{2}} + r^{2}d\varphi^{2}$$

Back-reaction in AdS₃ is known:

$$ds^{2} = -\left(r^{2} + R^{2} - \mu\right) d\tau^{2} + \frac{R^{2} dr^{2}}{r^{2} + R^{2} - \mu} + r^{2} d\varphi^{2}$$

 $\mu = 8 G_N R^2 m$ is related to mass of the particle m

Length of *spacelike* geodesics in locally AdS₃ space is known Let X be region with endpoints $(r_{\infty}^{(1)}, \tau_{\infty}^{(1)}, \varphi_{\infty}^{(1)})$ and $(r_{\infty}^{(2)}, \tau_{\infty}^{(2)}, \varphi_{\infty}^{(2)})$

$$S_X = \frac{c}{6} \log \left[\frac{2r_{\infty}^{(1)} \cdot r_{\infty}^{(2)}}{R^2} \frac{\cos\left(|\Delta \tau_{\infty}|a\right) - \cos\left(|\Delta \varphi_{\infty}|a\right)}{a^2} \right]$$

where

$$a\equiv\sqrt{1-\frac{\mu}{R^2}}=\alpha_\psi$$

carries information about perturbation

Pick region A to be an interval with endpoints

$$(t_-, z_\infty, y)$$
 and $(t_-, z_\infty, y + L)$

Region *B*:

$$(t_+, z_\infty, y)$$
 and $(t_+, z_\infty, y + L)$

 S_A and S_B match CFT result

Holographic entanglement entropy

For $A \cup B$ we have two cases: corresponds to S and T-channels

- Endpoints on the same boundary are connected
- Endpoints on different boundaries are connected

